Netrin/DCC signaling controls contralateral dendrites of octavolateralis efferent neurons.
نویسندگان
چکیده
The guidance molecule Netrin and its receptor DCC (deleted in colorectal cancer) attract commissural axons toward the midline en route to their final destination. To test whether these molecules can also guide dendrites, we studied the contralateral dendrites of zebrafish octavolateralis efferent (OLe) neurons, which are unusual in that they navigate toward and cross the midline. We found that, at the time of dendrite outgrowth, OLe neurons express dcc, and the hindbrain midline expresses netrin1. Knocking down dcc or netrin1 function by injecting antisense morpholino oligonucleotides prevented OLe contralateral dendrites from crossing the midline, showing that dcc and netrin1 are necessary for dendrite guidance or formation. Furthermore, by transplanting cells from dcc morphants into wild-type embryos and vice versa, we demonstrated that dcc acts cell autonomously in OLe dendrites. This work is the first evidence that Netrin/DCC signaling acts in dendrites in a vertebrate system.
منابع مشابه
Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly.
Netrin-1 is a secreted protein that directs long-range axon guidance during early stages of neural circuit formation and continues to be expressed in the mammalian forebrain during the postnatal period of peak synapse formation. Here we demonstrate a synaptogenic function of netrin-1 in rat and mouse cortical neurons and investigate the underlying mechanism. We report that netrin-1 and its rece...
متن کاملExpression patterns of the netrin receptor UNC5H1 among developing motor neurons in the embryonic rat hindbrain
The axon guidance molecule netrin-1 has been implicated in the midline repulsion of developing cranial motor axons. We have examined expression patterns of the netrin receptors UNC5H1 and DCC in embryonic rat hindbrains, in combination with labelling of developing motor neurons. We found that UNC5H1 expression colocalised with a number of cranial motor neuron subpopulations from embryonic day 1...
متن کاملDirect binding of TUBB3 with DCC couples netrin-1 signaling to intracellular microtubule dynamics in axon outgrowth and guidance.
The coupling of axon guidance cues, such as netrin-1, to microtubule (MT) dynamics is essential for growth cone navigation in the developing nervous system. However, whether axon guidance signaling regulates MT dynamics directly or indirectly is unclear. Here, we report that TUBB3, the most dynamic β-tubulin isoform in neurons, directly interacts with the netrin receptor DCC, and that netrin-1 ...
متن کاملThe activation of ezrin–radixin–moesin proteins is regulated by netrin-1 through Src kinase and RhoA/Rho kinase activities and mediates netrin-1–induced axon outgrowth
The receptor Deleted in Colorectal Cancer (DCC) mediates the attractive response of axons to the guidance cue netrin-1 during development. On netrin-1 stimulation, DCC is phosphorylated and induces the assembly of signaling complexes within the growth cone, leading to activation of cytoskeleton regulators, namely the GTPases Rac1 and Cdc42. The molecular mechanisms that link netrin-1/DCC to the...
متن کاملFLIM FRET Visualization of Cdc42 Activation by Netrin-1 in Embryonic Spinal Commissural Neuron Growth Cones
Netrin-1 is an essential extracellular chemoattractant that signals through its receptor DCC to guide commissural axon extension in the embryonic spinal cord. DCC directs the organization of F-actin in growth cones by activating an intracellular protein complex that includes the Rho GTPase Cdc42, a critical regulator of cell polarity and directional migration. To address the spatial distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 51 شماره
صفحات -
تاریخ انتشار 2006